Assessing impacts of social-ecological diversity on resilience in a wetland coupled human and natural system: Data release

Data and Resources

Interoperability


Groups


Additional Info

Field Value
Identifier http://hdl.handle.net/10261/280602
Author
Project
Name Assessing impacts of social-ecological diversity on resilience in a wetland coupled human and natural system: Data release
Description

[Methods] We mapped all emergent wetlands > 5×5 m within our study area—California’s Sierra Nevada foothills EPA zone III eco-region in Yuba, Nevada, and southern Butte countieso of California. Mapping was done by manually interpreting summer 2013 GeoEye-1 0.4 m imagery in Google Earth 7.1.5. Areas covered by hydrophytes (Typha spp., Scirpus spp., Juncus effusus, Leersia oryzoides, or various sedges) were considered wetland. We included hydrophytes that appeared seasonally dried; if green vegetation was present along the wetland-upland transition zone, we buffered 5 m into it. Open water and rice were excluded. If imagery was ambiguous, we used Google Earth imagery from adjacent years to help distinguish if a wetland was present. Each wetland’s geomorphology was classified as slope (shallow hillside flow), pond fringe, fluvial, rice fringe, irrigation ditch, or waterfowl impoundment. We combined historic imagery and field data to determine the water sources. We surveyed 237 wetlands for occupancy of Black Rails up to three times each summer from 2012–2016 using established broadcast survey methods (for details see Richmond et al. 2010). To assess the effects of water source on wetland hydrology, we resurveyed wetlands for 14 periods: in the early wet season (January 8–27), late wet season (March 22–25), early dry season (May 17–June 20), and late dry season (July 15–August 15) from summer 2013–2016. At each visit we walked throughout the wetland with a map of aerial imagery and recorded the percent wetness (areal percent of wetland saturated with water). We trapped mosquitoes at 63 wetlands from June–October, 2012–2014 (4710 trap/nights) and estimated WNV prevalence (probability of a mosquito testing positive for WNV) with genetic testing. We estimated WNV transmission risk at each wetland as the mean abundance of WNV-infected Culex spp. (the main WNV vectors) per trap/night. [Usage Notes] Note that wetland data is not a comprehensive list of all wetlands in the region. Missing values for black rail occupancy in some years or visits within years are delineated with

Themes
  • Science and technology
  • Environment
Tags
Creation date 2021-04-22T00:00:00
Last updated
Refresh rate
Languages English
Geographic coverage
    Geographic coverage (International)
    Time coverage
    Effective resource
    Related resources
    Normative
      Institute
      Publisher Publicador - Digital.CSIC
      Observations

      Recommended citation: Van Schmidt, Nathan D.; Oviedo, José L.; Hruska, Tracy; Huntsinger, Lynn; Kovach, Tony; Kilpatrick, A. Marm; Miller, Norman L.; Beissinger, Steven R.; 2021; Assessing impacts of social-ecological diversity on resilience in a wetland coupled human and natural system: Data release [Dataset]; Dryad; Version 4; https://doi.org/10.6078/D1970G